The World's Forum for Aerospace Leadership

Brian J. Giovannoni
Jet Propulsion Laboratory / California Institute of Technology
SpaceOps May 18 - June 1 2018, Marseille, France

Copyright 2018 California Institute of Technology. Government sponsorship acknowledged.

:

The World's Forum for Aerospace Leadership

- Take Away

= Containerization and Continuous Integration can:
— Support managing older software - improving maintainability

— Allow for change (e.g. patches, OS updates, address security vulnerabilities,
infrastructure) — evolving the system

— Reduce testing costs in operations — do more with less
= Plan for maintenance and change for the entire mission lifecycle

Introduction
Containerizing Software — improving maintainability

Continuous Integration Approach
= Evolving the system
= Do more with less

Summary

Copyright 2018 California Institute of Technology. Government sponsorship acknowledged. 2

GAIAA

The World's Forum for Aerospace Leadership

- Containerization (defined)

= A container is a stand-alone, executable image bundling
software (an application) and everything needed for it to
run.

» Continuous Integration (defined)

= Continuous Integration (CI) is a derivative of agile
software development practices in which developers
continually check in code for a nightly build process.

= Builds are regularly run against automated regression
testing and integration problems addressed very
frequently.

Copyright 2018 California Institute of Technology. Government sponsorship acknowledged.

:

The World's Forum for Aerospace Leadership

Technology
Artifactory

Jenkins

Software
Repositories

YUM - Yellowdog
Updater Modified

Reference

A development tool that supports binary management, works with
different software package management systems, and easily
integrates into a continuous integration workflow

URL.: https://jfrog.com/artifactory/

An open source automation server that supports building, deploying
and automating development projects

URL: https://jenkins.io/

GIT/GITHUB
SVN
CVS

A package installer/remover used for Redhat Package Managed
systems

URL.: http://yum.baseurl.org/

Copyright 2018 California Institute of Technology. Government sponsorship acknowledged.

GAIAA.

The World's Forum for Aerospace Leadership

+ Put very simply — Docker is an application level virtual engine
= Provides an environment for applications to execute (container)
= Contains application binaries and system libraries need to run
= Storage access is provided by container as needed by the application

- What types of applications are best for Docker?
= Daemon processes
= Pipeline processes
= Background jobs
= Minimal or no command line interface

+ Docker is not:
= A full virtual machine
= Not well suited for GUI based applications
= Not meant for real-time . Hard real-time applications

URL.: https://www.docker.com/what-docker

Copyright 2018 California Institute of Technology. Government sponsorship acknowledged.

:

The World's Forum for Aerospace Leadership
 Package only what you
need — maintainable
A bundles
/ — - Version control templates

v — know what you have /

Pkg 1 Pkg 2 Pkg 3 Param
Value

h .l |=
., i back out changes
=

. - Software comes from
sanctioned sources

Vendor Repo
0S Package Name/Ver

onf

?;’fﬁ:}[!;ﬁ'zi‘,’" Privileged access is not required

Docker App Template

= Any user can instantiate a
@ Docker image / container

Sys-Cur3.0 Sys-Cur3.0.1 | Sys-Cur3.1

MGSS YUM Repo

Docker Image /

Docker App Template Subsys / Elem App
Image
Docker App Template
GitHub

Artifactory / Docker Registry

Copyright 2018 California Institute of Technology. Government sponsorship acknowledged.

The World's Forum for Aerospace Leodership
@ Secure | https:/github.jpl.nasa.gov/MPS/slinc_2/edit/cm_docker/src/dockerfile Q
slinc_2 / src /| dockerfile [E& | or cancel T I t r.t
° emplates Supports

<> Edit file @ Preview changes Spaces * 2 & Nowrap u Deflnlng
1 # Usage: docker build . -t imagename:tag --build-arg ssname=slinc_2 --build-arg ss2test=ss2test.tar --build-arg ss2test_dir=/ammos/ss_dir Conﬁgurable
2 # Example : docker build . -t slinc_34.3.@:B13 --build-arg ssname=slinc_2 --build-arg ss2test=slinc_2-rhel7_64-SEQ 34.3.0-master-B13-Rbaec2:
3
4 FROM cae-artifactory.jpl.nasa.gov:16@01/gov/nasa/jpl/mgss/techtb/centos7:ve.1 bundles
5 # New Subsystem deliverable tar file for testing must be specified in the argument . .
6 486 ssnane = \ersioning
- gl
7 s ssatesd 4
8 ARG ss2test_dir
9 ENV target_dir /ammos
18 ENV test_dir ${target_dir}/test
11 ARG manifest
12 # Default dependencies manifest A27.1.seqdev.3 if not supplies in argument C Arguments aIIOW
13 # ENV manifest MGSS-ammos-system-current-A27.1.seqdev.3
14 ENV yum_repo https://ammos:g3tpackag3s@asis-repol.jpl.nasa.gov/asis/rhel7/x86_64/RPMS/MGSS-asis-repo-release-latest.noarch.rpm for'
15 i
16 RUN rpm -Uvh ${yum_repo} .
17 RUN yum install -y csh | Automatlon
18 RUN yum install -y perl
19 RUN yum install -y ${manifest} u 1 1
. Versioning
21 ADD ${ss2test} ${ss2test _dir}/ # Install new subsystem deliverble for subsystem interface testing
22 RUN echo "New build of ${ss2test} installed in ${ss2test_dir}" >> ${ss2test dir}/installed_ss.txt u Reuse

N
g}

Copyright 2018 California Institute of Technology. Government sponsorship acknowledged.

:

The World's Forum for Aerospace Leadership

« Docker containers allow for:

= Application isolation - maintainability
- Runtime environment is consistent on multiple platforms
- Isolate applications for security
= System dependencies - maintainability
- Breaks application in to modular bits containing only what is needed to execute
- Templates document application dependencies
= Minimal functionality

- Containerize applications and dependencies only
- Divide functionality in to individual processes

- Define and understand communications path between containers
= Templates can be versioned and used in automation workflows | -
= Agnostic containers - maintainability

- Bundle application and dependencies into a single object B
- Abstract machine specific settings
- Applications can run on many different machines

- Avoid OS, version and kernel specific dependencies and references

Note: Hardest change for a legacy system is to update to allow
agnostic containers

Copyright 2018 California Institute of Technology. Government sponsorship acknowledged.

:

The World's Forum for Aerospace Leadership

e Jenkins Job / Pipeline Job . . .
GED>— - Automate application builds

Jenkins Agent o
2 il |1 Arguments = Daily builds reduce application integration efforts
App1 Docker —l - Note: once teams get into a regular battle rhythm
el | = Builds stored in Artifactory
= Templates B T
T - Automate unit tests
@ HQocker 812 = Application builds, test cases, test data and test results stored

together

Docker Applimg/ | o Docker Appl Img / I
(OS Patch 1Base) | (OS Patch 1 Base) B L] I I L Testl n g

Lo b = On premise - in dedicated test servers

(i ——— 1est = Amazon Web Services (AWS)

- Amazon Elastic Container Service (ECS)

Artifactory / Docker Registry Bocker Appl Container /
R - Binary versioning
= Artifactory stores application versions and test results
- Evolving the system
e e = Applications built frequently - OS, third party software
BJ:‘:'n”jmmpenm dependency patching and integration testing

Copyright 2018 California Institute of Technology. Government sponsorship acknowledged.

GAIAA.

The World's Forum for Aerospace Leadership
Failed SIS Test
ettt bbbt bttt
bsys /€l v ‘ — T T T T T T T T) Software Interface
Subsys/Elem 1 Docker Subsys/Elem 1 | N S Testi
; pec Testing
Workflow — Docker Image : Subsys/Elem 1 - L
*k | Container
(SIS APP1) ! W
| | \/
I - i ~
I - : N
| Subsys/Elem 2 . \
Subsys/Elem 2 Docker Subsys/Elem 2 ! Container | T~ .
Workflow — Docker Image | #x) T N T A
(SIS APP2) *k I PN - |
~ | Orchestrator L !
_________________ (- \
N B O S e b
Failed SIS Test /‘-|
Subsys/Elem nnn Docker [| Subsys/Elem nnn Dlete 2 BAERG /" 5
Docker Image | 0
Workflow & Full/Partial o
(SIS APP-nnn) . Successful SIS " | /
Artifactory/ Doerr Subsys/Elem 1 Success Test 7
Registry Jenkinslog [— = = /_.
o
Subsys/Elem 2 Success - — - — - -
Jenking Log Full/Partial
Successful SIS
Automating “system test” Jenkins Job / Pipeline et

= (Capitalize on application level build and test
- Depending on need unit tests can be re-run
= Test subsystem interfaces
- Data flow
= System thread tests
- Performance requirements
- Security requirements
- System level requirements testing end-to-end

10

Copyright 2018 California Institute of Technology. Government sponsorship acknowledged.

:

The World's Forum for Aerospace Leadership
Docker Engine

femmm e e e e e e

(Subsys/Elem 1) : |

Docker Image Subsys/Elem 1 .

\ *ok ! Container
: * %
I

(Subsys/Elem 2

|

|

|

|

|

| |

Docker | ! '

cker mage** : Subsys/Elem 2 :

N— | Container |

/—\ *% :
]

Subsys/Elem nnn :

Sys 1 Container :

* %k k |

|

|

Docker Image
7 oue 1 bocker)
Sys 1 Docker |_Orchestrator

Image 1| """ —-——=

Sys S/W 4
* % %
N
/ \ Sys S/W 3
Sys nn Docker

Image
N
Sys S/W 1 Sys S/W 2
Artifactory/ Docker J

Registry

System Jenkins Job / Pipeline

Integrate and automate containerize with non-containerized applications

Evolving the system

= Automated thread tests support identifying a single application update
- Reduce the need for lengthy Integration Test & Deployment cycles — support smaller teams (especially in operations)

= Change deployment models for containerize applications 11

Copyright 2018 California Institute of Technology. Government sponsorship acknowledged.

:

The World's Forum for Aerospace Leadership
ASIS GitHub

p—] —____ beceee ' — B e [—
- : |—> — : —

0 J

Cl Base OS Co cl 0S Patchl Co cl 0S Patch nnn
Dockerfile : Dockerfile : Dockerfile
1 H
LV L2

Patch 1

lw)
o
o
~
[}
=
o2]
c.
o

\

Docker
Image /

OS Patch 1
Base

ASIS Artifactory / Docker Registry

Docker

Image /
OS Patch
nnn Base

* Evolving the system
= Patching the system (OS / 3 Party)

— Updates to the system can be applied and tested
without impacting application development cycles

— Roll back on thread test failure

12

Copyright 2018 California Institute of Technology. Government sponsorship acknowledged.

:

The World's Forum for Aerospace Leadership

» Plan for maintenance and change for the entire mission
lifecycle
= Automation alone is insufficient
= Missions need to adopt a culture and willingness for change
= Automation and good process introduced in development and
continued thru operations builds trust

- Containerization
= Modularize system components for improved maintainability

— Supports an agility in deployment approaches
— Allows for isolation of functions
— Manage change in smaller well defined objects

- Continuous Integration

— Allow for automated change (e.g. patches, OS updates, address security
vulnerabilities, infrastructure)

— Reduce testing costs in operations

13

Copyright 2018 California Institute of Technology. Government sponsorship acknowledged.

:

The World's Forum for Aerospace Leodership

Questions?

Copyright 2018 California Institute of Technology. Government sponsorship acknowledged.

14

:

The World's Forum for Aerospace Leodership

Thank You!

Copyright 2018 California Institute of Technology. Government sponsorship acknowledged.

15

The World's Forum for Aerospace Leadership

